ИЗМЕНЕНИЯ ЛОКАЛИЗАЦИИ ПРИРОДНЫХ ОЧАГОВ НЕКОТОРЫХ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ СЕВЕРО-ЗАПАДНОГО ФЕДЕРАЛЬНОГО ОКРУГА РФ

Червякова Ю.И.

ФГБОУ ВПО «Мурманский государственный гуманитарный университет» (183720, г. Мурманск, ул. Капитана Егорова, д.15), e-mail: <u>chekpoint140991@yandex.ru</u>

Основное внимание в статье автор акцентирует на двух трансмиссивных инфекциях, переносимых иксодовыми клещами: вирусном клещевом энцефалите и иксодовом клещевом боррелиозе (далее ВКЭ и ИКБ). Целью исследования являлся анализ изменения локализации границ природных очагов ВКЭ и ИКБ в СЗФО РФ. Автором определены основные причины, способствующие изменению границ природных очагов ВКЭ и ИКБ, рассмотрена взаимосвязь роста заболеваемости ВКЭ, ИКБ от сопутствующих факторов, а также произведена сравнительная характеристика заболеваемости населения данными инфекциями в СЗФО РФ.

В ходе проведённого исследования установлено: основной причиной, способствующей изменению границ природных очагов ВКЭ и ИКБ, является повышение температуры; рост заболеваемости ВКЭ и ИКБ зависит не только от климатических факторов, но и от факторов неклиматической природы; заболеваемость ИКБ превышает ВКЭ.

В настоящее время наблюдается недостаточный охват населения вакцинацией, несвоевременно и недостаточно проводятся мероприятия по борьбе с источниками и переносчиками инфекции.

Ключевые слова: вирусный клещевой энцефалит, иксодовый клещевой боррелиоз, Северо-Западный Федеральный округ, изменения климата, комплексный синэкологический подход.

CHANGES IN THE LOCALIZATION OF NATURAL FOCI OF SOME INFECTIOUS DISEASES NORTH-WEST FEDERAL DISTRICT ON THE RUSSIAN FEDERATION

Chervyakova Y.I.

Federal state budget educational institution of higher education «Murmansk State Humanities University» (183720, Murmansk, st. Egorova, 15), e-mail: chekpoint140991@yandex.ru

The main attention in the article the author focuses on two vector-borne infections transmitted exode ticks: tick-borne encephalitis virus and Ixodes tick-borne borreliosis. The aim of the study was to analyze the changes in the localization of the boundaries of natural foci of tick-borne encephalitis virus and Ixodes tick-borne borreliosis in the Northwestern Federal District of Russia. The author identifies the main reasons contributing to alter the boundaries of the natural foci of tick-borne encephalitis virus and Ixodes tick-borne borreliosis, examined the relationship increased incidence of tick-borne encephalitis virus, Ixodes tick-borne

borreliosis on the associated factors, and performed comparative analysis of the incidence of these infections in the population of North-West Russia.

In the course of the study established that the main cause contributing to alter the boundaries of the natural foci of tick-borne encephalitis virus and Ixodes tick-borne borreliosis is to increase the temperature; increased incidence of tick-borne encephalitis virus and Ixodes tick-borne borreliosis depends not only on climatic factors, but also on the nature of non-climatic factors; the incidence of tick-borne encephalitis virus exceeds the Ixodes tick-borne borreliosis.

Currently, there is insufficient vaccination coverage, untimely and insufficient measures are being taken to combat the sources and carriers of infection.

The Key Words: tick-borne encephalitis virus, Ixodes tick-borne borreliosis, North-West Russia, climate change, integrated approach synecological.

Состояние и исследование проблемы. Изучение географии природно-очаговых болезней, возбудители которых входят в состав природных экосистем, закономерностей их распространения, мониторинг, разработка мер контроля и профилактики опираются на системный подход и картографические методы исследования.

Несмотря на усиление внимания к данной проблеме, в целом многие вопросы закономерностей распространения и пространственной динамики болезней с природной очаговостью разработаны недостаточно. Поскольку природно-очаговые болезни тесно связаны с существующими природными, антропогенными и социально-экономическими особенностями региона.

ВКЭ и ИКБ имеют различное происхождение (вирусное – в случае клещевого энцефалита и бактериальное – в случае клещевого боррелиоза), но характеризуются одинаковым набором основных переносчиков и носителей, что определяет их сходство в экологическом отношении.

В циркуляции клещевых инфекций в природе ведущая роль принадлежит мелким млекопитающим, крупным копытным животным (как диким, так и домашним) и иксодовым клещам. Птицам отводится роль дополнительного резервуара инфекций в природных очагах. Возбудитель клещевого боррелиоза имеет более широкую экологическую амплитуду, чем возбудитель клещевого энцефалита, однако, оптимум ареала у двух инфекций совпадает.

С момента обнаружения вируса клещевого энцефалита Л.А. Зильбером в 1937 году и спирохет, вызывающих боррелиоз, В. Бургдорфером в 1981 году значение этих болезней среди других природно-очаговых инфекций увеличилось, в связи с чем всё большее внимание уделяется медико-географическим исследованиям этих зоонозов.

До настоящего времени различные аспекты феномена природной очаговости, за очень редким исключением, изучали и продолжают изучать в связи с каким-либо одним

возбудителем. В значительной мере это происходит по чисто методологическим причинам. Комплексный синэкологический подход к познанию процессов, происходящих в очаговых экосистемах, находится в «зачаточном» состоянии. Вместе с тем возможность накопления принципиально новых фактов и их обобщения будут в значительной мере связаны с развитием именно такого подхода (Коренберг, 2001). Это подразумевает потребность разностороннего подхода к исследованию инфекций, принадлежащих данной группе.

Широта распространения того или иного типа смешанных природных очагов определяется прежде всего степенью симпатрии ареалов соответствующих возбудителей и спецификой их требований к абиотическим и биотическим факторам среды. Естественно, что на периферии или в пессимальных частях ареала определенного возбудителя он существует только в наиболее подходящих для него экосистемах.

Особенности пространственного распределения некоторых возбудителей и многолетней динамики образованных ими паразитарных систем могут быть хорошо выражены даже в тех случаях, когда они передаются одним и тем же основным переносчиком, что свидетельствует, прежде всего, об экологическиой специфике самих микроорганизмов.

Распространение микст-инфекций в природных очагах - нормальное явление, соответствующее биологии болезнетворных микроорганизмов в организме переносчика и в природной экосистеме. Любая болезнь, развивающаяся в результате укуса клеща, должна быть расценена как потенциально смешанная инфекция. Клинически перенесенные клещевые смешанные инфекции протекают более тяжело, чем соответствующие болезни, вызванные единственным возбудителем (Korenberg, 2004).

Климатический фактор, как основная причина изменения локализации границ природных очагов иксодовых клещей. Изменения климата, произошедшие на территории России в XX веке, способствовали смещению границы распространения переносчиков природно-очаговых инфекций на северо-восток европейской территории России и Сибири.

Одним из важных следствий потепления климата является большая продолжительность активности клещей в течение сезона. В связи с обильными осадками и длительностью теплового периода осенью, пик активности иксодовых клещей становится необычно длинным, увеличивается заболеваемость ВКЭ и ИКБ.

За последние годы наиболее высокие уровни заболеваемости ВКЭ зарегистрированы в Архангельской области. При уменьшении заболеваемости ВКЭ в целом по России (с конца 90-х гг.) в 2 раза, в Архангельской области она возросла в 3 раза.

В северных районах Архангельской области, где ранее не регистрировался ВКЭ, появились первые пострадавшие от нападения клещей, в центральных районах наблюдается десятикратный рост числа пострадавших, в южных районах – трёхкратный.

Повышение уровня заболеваемости ВКЭ в Архангельской области связывают как с более тёплыми зимами, так и со снижением использования антиклещевой обработки.

На севере региона, в Мурманской области, Ненецком АО, Республике Коми, случаи заболевания ВКЭ и ИКБ практически не регистрируются.

Максимальное число больных наблюдается в Вологодской, Калининградской областях и Санкт-Петербурге. Ситуация в Санкт-Петербурге, вероятно, объясняется большим размером человеческой популяции. Вологодская и Калининградская области обладают благоприятными природно-климатическими условиями для размножения популяции клещей и их прокормителей.

Сопутствующие факторы роста заболеваемости ВКЭ и ИКБ.

- 1. Взаимосвязь сезонной активности клещей и развития заболеваемости. Для ВКЭ и ИКБ характерна строгая весенне-летняя сезонность начала заболевания, связанная с сезонной активностью переносчиков. Максимум заболеваемости, как правило, регистрируется в июне, затем она снижается и со второй половины июля отмечается опять в виде единичных случаев. Конец эпидемического сезона приходится на июль, но единичные случаи могут наблюдаться в сентябре.
- 2. Демографический и экологический факторы. Увеличение числа городского населения и освоение природно-очаговых территорий (под дачные участки, лесопарки; более частый выезд горожан «на природу» для отдыха, сбора грибов, ягод и т. д.) сопровождается частотой контактов с возбудителями и переносчиками инфекций.

Усилившаяся в последние годы миграция населения, развитие туризма привели к нарушению экологического равновесия в отдельных регионах.

Важная роль принадлежит также генетическим изменениям, которые претерпевают возбудители в изменившихся под деятельностью человека условиях окружающей среды. Эти процессы могут привести к появлению штаммов с высокой вирулентностью, распространению инфекции по типу эпидемии.

3. Социально-экономический фактор. Заболеваемость ВКЭ, ИКБ и другими природно-очаговыми заболеваниями зависит от объёмов вакцинации, от подавления очагов методами специфической и неспецифической профилактики.

Стоит отметить, что в 2011 г. в Мурманской области было зарегистрировано 2 случая ВКЭ и 5 случаев ИКБ. Оба случая завозного характера (присасывание клещей произошло на территориях Псковской и Вологодской областей).

По состоянию на июнь 2012 г. в лечебные учреждения области по поводу присасывания клещей уже обратилось 29 человек, в том числе 4 ребёнка. Во всех случаях присасывание клещей произошло за пределами Мурманской области.

Специфическая профилактика (вакцина) существует только в отношении ВКЭ, поэтому целесообразно более полно использовать возможности современной неспецифической профилактики.

В Мурманской области вакцинация осуществляется за счёт личных средств граждан. В 2011 г. было вакцинировано и ревакцинировано 393 человека. В настоящее время в области привито 304 человека, из них 129 детей до 17 лет.

По состоянию на июнь 2012 г. экстренную профилактику иммуноглобулином против ВКЭ получили 15 человек (14 не получили: 5 человек отказались, 9 поздно обратились).

Сегодня на большей части территории нозоареала ВКЭ уровень прививаемости населения составляет 2-3%. Оптимальным считается охват 95-97 % вакцинируемой группы населения.

Неспецифическая профилактика состоит из 2 направлений: уничтожение клещей-переносчиков в природных биотопах, средства индивидуальной защиты от клещей.

Площади акарицидных обработок в большинстве субъектов РФ ежегодно увеличиваются (в 2011 г. – 70680,2 га, что больше, чем в 2010 г. на 11,6 %). Однако эти мероприятия носят локальный характер.

Сравнительный анализ заболеваемости ВКЭ и ИКБ в СЗФО РФ. Если рассматривать обе инфекции, можно заметить, что начиная с 2000 г. заболеваемость ИКБ (в значении - всего тысяч человек) превышает заболеваемость ВКЭ (рис. 1).

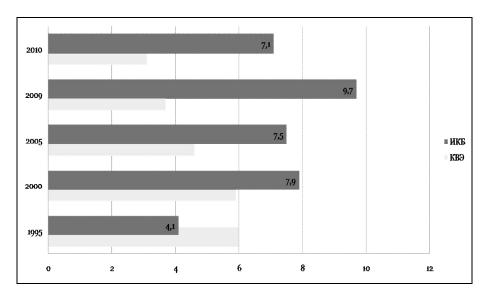


Рис. 1. Заболеваемость населения ВКЭ и ИКБ (всего тыс. человек).

Аналогичная картина наблюдается при рассмотрении заболеваемости на 100 000 человек (рис. 2.). Это можно объяснить тем, что ИКБ имеет более широкий ареал распространения, чем ВКЭ и характеризуется очень высокой (абсолютной) восприимчивостью населения.

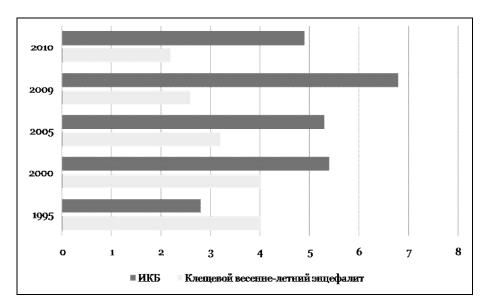


Рис. 2. Заболеваемость населения ВКЭ и ИКБ (на 100 000 человек).

Выводы:

- 1) основной причиной, способствующей изменению границ природных очагов ВКЭ и ИКБ, является повышение температуры;
- 2) в настоящее время наблюдается повышение роста заболеваемости данными болезнями в направлении с южных регионов в северные;
- 3) рост заболеваемости ВКЭ и ИКБ зависит не только от климатических факторов, но и от факторов неклиматической природы;
 - 4) заболеваемость ИКБ превышает ВКЭ (рис. 1, 2).

Таким образом, перед исследователями встает новый круг задач: прогноз распространения болезней; моделирование связи нозоформ с факторами среды; картографирование природно-очаговых болезней; создание медико-географических атласов.

- В основу федеральных и региональных программ должны быть положены три основных принципа:
- 1) принцип предупреждающих действий, заключающийся в применении своевременных мер по оповещению ответственных органов власти и других заинтересованных сторон о возможных последствиях влияния климатических изменений на здоровье населения;

- 2) принцип предосторожности, направленный на предупреждение негативного влияния климатических изменений на здоровье населения путём проведения оценки и превентивных эпидемиологических мероприятий;
 - 3) принципы медицинской этики, принятые Всемирной медицинской ассоциацией.

Список использованной литературы

- 1. Алексеев А. Н. Влияние глобального изменения климата на кровососущих эктопаразитов и передаваемых ими возбудителей болезней / А. Н. Алексеев // Вестник РАМН. −2006.- №3. − С. 21-25.
- 2. Егоров И. Я. Природно-очаговые инфекции в Якутии / И. Я. Егоров, В. Ф. Чернявский, Г. Ф. Шахнович. Якутск, 1996. С. 20.
- 3. Куролап С. А. Медицинская география: современные аспекты / С. А. Куролап // Соросовский образовательный журнал. -2000. Т.4. №6. С. 52-58.
- 4. Лихачев А. А. Региональное медико-экологическое картографирование как инструмент мониторинга и управления качеством окружающей среды / А. А. Лихачев // Сборник материалов молодежной научной экологической конференции «Молодёжь за безопасную окружающую среду для устойчивого развития». Дубна: Междунар. ун-т природы, о-ва и человека «Дубна», 2007. С. 265 271.
- 5. Эпидемиологический надзор за особо опасными и природно-очаговыми инфекциями в условиях Крайнего Севера // под ред. Егорова. Якутск, 2000. С. 248.